SYNTHESE: Limites et continuité des fonctions vectorielles

I] Limite d'une fonction vectorielle

- Lorsque $(x_1, \ldots, x_k) \to (a_1, \ldots, a_k)$, nous avons pour tout $k \in [1, n]$: $x_k \to a_k$.
- Pour étudier la limite en (0,0) d'une fonction de deux variables (x,y), il est parfois utile d'effectuer un changement de variables polaire :

$$\left\{ \begin{array}{l} x = \rho \cos \theta \\ y = \rho \sin \theta \end{array} \right. \quad \text{car ainsi} \quad \rho = \sqrt{x^2 + y^2} \to 0$$

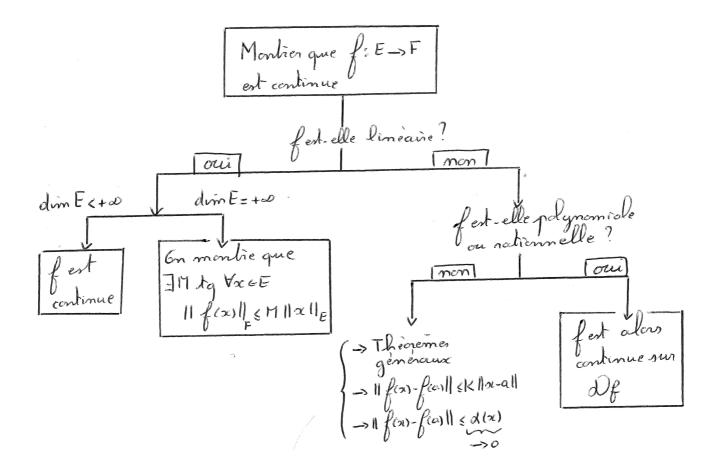
• Pour montrer qu'un fonction n'a pas de limite en a, on peut montrer que les limites obtenues en suivant deux chemins différents X_1 et X_2 sont distinctes.

$$\begin{cases} f(x) \xrightarrow[x \to a]{x \to a} l_1 \\ f(x) \xrightarrow[x \to a]{x \to a} l_2 \end{cases} \text{ avec } l_1 \neq l_2 \quad \Rightarrow \quad f \text{ n'a pas de limite en } a$$

II] Continuité d'une fonction vectorielle

1) Pour montrer la continuité d'une fonction vectorielle :

On suit la démarche indiquée dans l'organigramme ci-dessous :



ullet Lorsque la fonction est à valeur dans F de dimension finie, on montre la continuité des fonctions coordonnées.

Par exemple :
$$F = \mathbb{C}$$
, $F = \mathfrak{M}_n(\mathbb{K})$, $F = \mathbb{K}_n[X]$...

• Lorsque la fonction est à valeur dans $F_1 \times \cdots \times F_n$, on montre la continuité des fonctions composantes.

Par exemple :
$$F = \mathbb{K}^n ...$$

2) Pour montrer la continuité en un point a d'une fonction vectorielle :

- Avec le théorème de majoration : $||f(x) f(a)||_F \le \cdots \le \alpha(x) \xrightarrow[x \to a]{} 0$.
- En se plaçant au voisinage $\mathcal{B}(a,\alpha)$ de a pour y voir plus clair.
- En introduisant une partition $\begin{cases} V = X_1 \cup X_2 \\ a \in \bar{X}_1 \cap \bar{X}_2 \end{cases}$ d'un voisinage de a et en montrant que $\begin{cases} f(x) \xrightarrow[x \to a]{x \to a} f(a) \\ f(x) \xrightarrow[x \to a]{x \to a} f(a) \end{cases}$

3) Pour montrer la non-continuité d'une fonction vectorielle :

- Cas général : On montre que $f(x) \xrightarrow[a \to a]{} f(a)$ en suivant un "chemin" $X \subset E$ tel que $a \in \bar{X}$.
- Si f est linéaire : On montre qu'il existe une suite $(x_n) \in E^{\mathbb{N}}$ telle que $\frac{\|f(x_n)\|_F}{\|x_n\|_E} \to +\infty$.

4) Exemples de fonctions vectorielles usuelles continues :

• φ_k définie sur	$E_1 \times \cdots \times E_p$	par	$\varphi_k(x_1, \ldots, x_p) = x_k$	(projection élémentaire)
• φ définie sur	\mathbb{R}^2	par	$\varphi(x,y) = \frac{xy\sin(y^2)}{1+x^2}$	(composition de f° continues)
• φ définie sur	[0, 1]	par	$\varphi(t) = a + t(b - a)$	(fonctions coordonnées polynomiales)
• φ définie sur	$\mathfrak{M}_n(\mathbb{K})$	par	$\varphi(M) = M^2$	(fonctions coordonnées polynomiales)
• φ définie sur	$\mathfrak{M}_n(\mathbb{K})$	par	$\varphi(M) = \det(M)$	(fonction polynomiale)
• φ définie sur	$\mathfrak{M}_n(\mathbb{K})$	par	$\varphi(M) = \operatorname{Tr}(M)$	(linéarité en dimension finie)
• φ définie sur	$\mathfrak{M}_n(\mathbb{K})$	par	$\varphi(M) = P^{-1}MP$	(linéarité en dimension finie)
• φ définie sur	$(\mathfrak{M}_n(\mathbb{K}))^2$	par	$\varphi(M,N) = MN$	(bilinéarité en dimension finie)
• φ définie sur	E^2	par	$\varphi(x,y) = \langle x,y \rangle$	(caractérisation : 0-lipschitzienne)
• φ définie sur	$\mathfrak{M}_n(\mathbb{K})$	par	$\varphi(M) = Com(M)$	(fonctions coordonnées polynomiales)
• φ définie sur	$\mathrm{GL}_n(\mathbb{K})$	par	$\varphi(M) = M^{-1}$	(fonctions coordonnées rationnelles)
• φ définie sur	$\mathbb{K}_n[X]$	par	$\varphi(P) = P'$	(fonctions coordonnées polynomiales)
• φ définie sur	E	par	$\varphi(x) = d(x, A)$	(fonction lipschitzienne)

III] Applications de la continuité des applications vectorielles

Ouverts et Fermés :

La continuité permet de montrer qu'une partie de Δ est un ouvert ou un fermé.

En effet, lorsque $f: E \to F$ est continue :

- Lorsque $\Delta = f^{-1}(\Omega)$ avec ω un ouvert de F, alors Δ est un ouvert de E.
- Lorsque $\Delta = f^{-1}(\Omega)$ avec ω un fermé de F, alors Δ est un fermé de E.

C'est ainsi que l'on montre que :

- $GL_n(\mathbb{K})$ est un ouvert de $\mathfrak{M}_n(\mathbb{R})$.
- $O_n(\mathbb{R})$ et que $SO_n(\mathbb{R})$ sont des fermés de $\mathfrak{M}_n(\mathbb{R})$.
- $\{x \in E \mid f(x) > 0\}$ est un ouvert de E.

Continuité et Densité :

La continuité de f et g permet de généraliser l'égalité f(x) = g(x) lorsque celle-ci n'est vraie que sur un ensemble dense de E.

C'est ainsi que:

- \to l'on démontre, grâce à la densité de $\mathrm{GL}_n(\mathbb{K})$ dans $\mathfrak{M}_n(\mathbb{K})$ que $\chi_{AB}=\chi_{BA}$.
- \to l'on montre grâce à la densité de $\mathbb Q$ dans $\mathbb R$ que les applications continues qui vérifient pour tout $x,\ y \in \mathbb R$, f(x+y) = f(x) + f(y) sont les applications de la forme f(x) = ax.

IV Les parties connexes par arcs

 $\underline{\text{D\'efinition}}: A \subset E \text{ est connexe par arc lorsque pour tout } a, \ b \in A, \text{ il existe } \gamma \in \mathcal{C}([0,\ 1],\ A) \text{ telle que } \left\{ \begin{array}{l} \gamma(0) = a \\ \gamma(1) = b \end{array} \right..$

Proposition : Les connexes par arc de \mathbb{R} sont les intervalles.

Proposition: L'image continue d'un connexe par arc est connexe par arc.

Pour montrer qu'une partie X est connexe par arc :

- Soit avec la définition \heartsuit . On prend deux points a et b quelconques de X et on recherche un chemin continue de X qui les relie.
- \bullet Soit en montrant que X est l'image d'un connexe par arc.

Pour montrer qu'une partie n'est pas connexe par arc :

On procède par l'absurde :

- ullet Soit en recherchant deux points de X qui ne peuvent être reliés par un chemin continue de X
- Soit en recherchant une application continue $f: E \to \mathbb{R}$ telle que f(X) n'est pas un intervalle.

Exemples à connaître :

- \mathbb{R}^* , $\mathrm{GL}_n(\mathbb{R})$, $\mathrm{O}_n(\mathbb{R})$ et les hyperplans en dimension finie ne sont pas connexes par arcs.
- \mathbb{C}^* , $\mathrm{GL}_n(\mathbb{C})$, $\mathrm{SO}_n(\mathbb{R})$ sont connexes par arcs.